 2
2List of Physics Oscillations Formulas, Equations Latex Code
Navigation
In this blog, we will introduce most popuplar formulas in Oscillations, Physics. We will also provide latex code of the equations. Topics include harmonic oscillations, mechanic oscillations, electric oscillations, waves in long conductors, coupled conductors and transformers, pendulums, harmonic wave, etc.
- 1. Oscillations and Waves
- Harmonic oscillations
- Mechanic oscillations
- Electric oscillations
- Waves in long conductors
- Amplitude of a driven oscillation
- Coupled conductors and transformers
- Pendulums
- Angular frequency for a damped oscillation
- Displacement of a driven oscillator
- Displacement of a slightly damped oscillator
- Energy change in a damped oscillation
- Energy transmitted by a harmonic wave
- Harmonic wave function
- Kinetic energy of simple harmonic motion
- Phase constant of a driven oscillation
- Potential energy of simple harmonic motion
- Power transmitted by a harmonic wave
- Standing-wave function
- Superposition of standing waves on a string with both ends fixed
- Total energy of simple harmonic motion
- Velocity at resonance frequency of a driven oscillator
- 
    Harmonic oscillationsEquation
 
 Latex Code\Psi(t)=\hat{\Psi}(t)e^{i(\omega t \pm \phi)}=\hat{\Psi}(t)\cos (\omega t \pm \phi) \\ \sum_{i} \hat{\Psi_{i}}\cos(\alpha_{i} \pm \omega t) =\hat{\Phi}\cos (\beta \pm \omega t) \\ \tan (\beta)=\frac{\sum_{i} \hat{\Psi_{i}} \sin (\alpha_{i})}{\sum_{i} \hat{\Psi_{i}} \cos (\alpha_{i})} \\ \hat{\Phi}^{2} = \sum_{i} \hat{\Psi_{i}^{2}} + 2 \sum_{j > i} \sum_{i} \hat{\Psi_{i}} \hat{\Psi_{j}} \cos (\alpha_{i} - \alpha_{j}) \\ \int x(t) dt=\frac{x(t)}{i \omega} \\ \frac{d^{n}(x(t))}{d t^{n}}=(i \omega)^{n} x(t)ExplanationLatex code for the harmonic oscillations. I will briefly introduce the notations in this formulation. - : Amplitude 
- Superposition of more harmonic oscillations with the same frequency
 
 Related DocumentsRelated Videos
- 
    Mechanic oscillationsEquation
 
 Latex Codem\ddot{x}=F(t)-k\dot{x}-Cx \\ F(t)=\hat{F}\cos(\omega t) \\ -m\omega^2 x=F-Cx-ik\omega x \\ \omega_0^2=C/m \\ x=\frac{F}{m(\omega_0^2-\omega^2)+ik\omega} \\ \dot{x}=\frac{F}{i\sqrt{Cm}\delta+k} \\ \delta=\frac{\omega}{\omega_0}-\frac{\omega_0}{\omega} \\ Z=F/\dot{x} \\ Q=\frac{\sqrt{Cm}}{k}ExplanationLatex code for the Mechanic Oscillations. I will briefly introduce the notations in this formulation. - : Construction of spring with constant 
- : Damping constant 
- : Periodic force 
- : Velocity 
- : Impedance of the system 
- : The quality of the system 
- Velocity resonance frequency: The frequency with minimal 
 
 Related DocumentsRelated Videos
- 
    Electric oscillationsEquation
 
 Latex Code\text{Impedance} \\ Z=R+ix \\ \text{Series connection} \\ V=IZ, Z_{\rm tot}=\sum_i Z_i~,~~L_{\rm tot}=\sum_i L_i~,~~ \frac{1}{C_{\rm tot}}=\sum_i\frac{1}{C_i}~,~~Q=\frac{Z_0}{R}~,~~ Z=R(1+iQ\delta) \\ \text{Parallel connection} \\ \frac{1}{Z_{\rm tot}}=\sum_i\frac{1}{Z_i}~,~~ \frac{1}{L_{\rm tot}}=\sum_i\frac{1}{L_i}~,~~ C_{\rm tot}=\sum_i C_i~,~~Q=\frac{R}{Z_0}~,~~ Z=\frac{R}{1+iQ\delta}ExplanationLatex code for the Electric oscillations. I will briefly introduce the notations in this formulation. - : Phase Angle 
- : Impedance of a Resistor 
- : Capacitor 
- : Self inductor 
- : Quality of a coil 
 
 Related DocumentsRelated Videos
- 
    Waves in long conductorsEquation
 
 Latex CodeZ_0=\sqrt{\frac{dL}{dx}\frac{dx}{dC}} \\ v=\sqrt{\frac{dx}{dL}\frac{dx}{dC}}ExplanationLatex code for the Waves in Long conductors. I will briefly introduce the notations in this formulation. - : is transmission velocity 
 
 Related DocumentsRelated Videos
- 
    Amplitude of a driven oscillationEquation
 
 Latex CodeA = \frac{{F_0 }}{{\sqrt {m^2 \left( {\omega _0^2 - \omega ^2 } \right)^2 + b^2 \omega ^2 } }}Explanation
 Related DocumentsRelated Videos
- 
    Coupled conductors and transformersEquation
 
 Latex CodeM_{12}=M_{21}:=M=k\sqrt{L_1L_2}=\frac{N_1\Phi_1}{I_2}=\frac{N_2\Phi_2}{I_1}\sim N_1N_2 \\ \frac{V_1}{V_2}=\frac{I_2}{I_1}=-\frac{i\omega M}{i\omega L_2+R_{\rm load}}\approx-\sqrt{\frac{L_1}{L_2}}=-\frac{N_1}{N_2} \\ \Phi_{12}=M_{12}I_2 \\ \Phi_{21}=M_{21}I_1ExplanationLatex code for Coupled conductors and transformers. I will briefly introduce the notations in this formulation. - : part of the flux originating from I_{2{} through coil 2, which is enclosed by coil 1 
- : coefficients of mutual induction 
- : Coupling factor 
 
 Related DocumentsRelated Videos
- 
    PendulumsEquation
 
 Latex CodeT=1/f \\ T=2\pi\sqrt{m/C} \\ T=2\pi\sqrt{I/\tau} \\ T=2\pi\sqrt{I/\kappa} \\ T=2\pi\sqrt{l/g}ExplanationLatex code for Coupled conductors and transformers. I will briefly introduce the notations in this formulation. - : Oscillating spring 
- : Physical pendulum 
- : Torsion pendulum 
- : Mathematical pendulum 
 
 Related DocumentsRelated Videos
- 
    Angular frequency for a damped oscillationEquation
 
 Latex Code\omega ' = \omega _0 \sqrt {1 - \left( {\frac{b}{{2m\omega _0 }}} \right)^2 } = \omega _0 \sqrt {1 - \frac{1}{{4Q^2 }}}Explanation
 Related DocumentsRelated Videos
- 
    Displacement of a driven oscillatorEquation
 
 Latex Codex = A\cos \left( {\omega t + \delta } \right)Explanation
 Related DocumentsRelated Videos
- 
    Displacement of a slightly damped oscillatorEquation
 
 Latex Codex = A_0 \exp \left( { - \frac{b}{{2m}}t} \right)\cos \left( {\omega 't + \delta } \right)Explanation
 Related DocumentsRelated Videos
- 
    Energy change in a damped oscillationEquation
 
 Latex Code\frac{{\Delta E}}{E} = - \frac{b}{m}T \\ E = E_0 \exp \left( { - \frac{b}{m}t} \right) = E_0 \exp \left( { - \frac{t}{\tau }} \right)Explanation
 Related DocumentsRelated Videos
- 
    Energy transmitted by a harmonic waveEquation
 
 Latex Code\Delta E = \frac{1}{2}\mu \omega ^2 A^2 \Delta x = \frac{1}{2}\mu \omega ^2 A^2 \upsilon \Delta tExplanation
 Related DocumentsRelated Videos
- 
    Harmonic wave functionEquation
 
 Latex Codey(x,t) = A\sin \left[ {2\pi \left( {\frac{x}{\lambda } - \frac{t}{T}} \right)} \right] = A\sin \left[ {k(x - \upsilon t)} \right]Explanation
 Related DocumentsRelated Videos
- 
    Kinetic energy of simple harmonic motionEquation
 
 Latex CodeK = \frac{1}{2}kA^2 \sin ^2 \left( {\omega t + \delta } \right)Explanation
 Related DocumentsRelated Videos
- 
    Phase constant of a driven oscillationEquation
 
 Latex Code\tan \delta = \frac{{b\omega }}{{m\left( {\omega _0^2 - \omega ^2 } \right)}}Explanation
 Related DocumentsRelated Videos
- 
    Potential energy of simple harmonic motionEquation
 
 Latex CodeU = \frac{1}{2}kA^2 \cos ^2 \left( {\omega t + \delta } \right)Explanation
 Related DocumentsRelated Videos
- 
    Power transmitted by a harmonic waveEquation
 
 Latex CodeP = \frac{{dE}}{{dt}} = \frac{1}{2}\mu \omega ^2 A^2 \upsilonExplanation
 Related DocumentsRelated Videos
- 
    Standing-wave functionEquation
 
 Latex Codey(x,t) = A_n \cos (\omega _n t + \delta _n )\sin (k_n x)Explanation
 Related DocumentsRelated Videos
- 
    Superposition of standing waves on a string with both ends fixedEquation
 
 Latex Codey(x,t) = \sum\limits_n {A_n \cos (\omega _n t + \delta _n )\sin (k_n x)}Explanation
 Related DocumentsRelated Videos
- 
    Total energy of simple harmonic motionEquation
 
 Latex CodeE_{Total} = \frac{1}{2}kA^2Explanation
 Related DocumentsRelated Videos
- 
    Velocity at resonance frequency of a driven oscillatorEquation
 
 Latex Code\upsilon = + A\omega \cos \left( {\omega t} \right) = - A\omega \sin \left( {\omega t - \frac{\pi }{2}} \right)Explanation
 Related DocumentsRelated Videos