Algorithm and Hardness for Dynamic Attention Maintenance in Large Language Models

Jan Van Den Brand, Zhao Song, Tianyi Zhou

The attention scheme is one of the key components over all the LLMs, such as BERT, GPT-1, Transformers, GPT-2, 3, 3.5 and 4. Inspired by previous theoretical study of static version of the attention multiplication problem [Zandieh, Han, Daliri, and Karbasi ICML 2023, Alman and Song NeurIPS 2023], we formally define a dynamic version of attention matrix multiplication problem. In each iteration we update one entry in key matrix $K \in \mathbb{R}^{n \times d}$ or value matrix $V \in \mathbb{R}^{n \times d}$. In the query stage, we receive $(i,j) \in [n] \times [d]$ as input, and want to answer $(D^{-1} A V)_{i,j}$, where $A:=\exp(QK^\top) \in \mathbb{R}^{n \times n}$ is a square matrix and $D := \mathrm{diag}(A {\bf 1}_n) \in \mathbb{R}^{n \times n}$ is a diagonal matrix and ${\bf 1}_n$ denotes a length-$n$ vector that all the entries are ones. We provide two results: an algorithm and a conditional lower bound. Inspired by the lazy update idea from [Demetrescu and Italiano FOCS 2000, Sankowski FOCS 2004, Cohen, Lee and Song STOC 2019, Brand SODA 2020], we provide a data-structure that uses $O(n^{\omega(1,1,\tau)-\tau})$ amortized update time, and $O(n^{1+\tau})$ worst-case query time, where $n^{\omega(1,1,\tau)}$ denotes $\mathrm(n,n,n^\tau)$ with matrix multiplication exponent $\omega$ and $\tau$ denotes a constant in $(0,1]$. We also show that unless the hinted matrix vector multiplication conjecture [Brand, Nanongkai and Saranurak FOCS 2019] is false, there is no algorithm that can use both $O(n^{\omega(1,1,\tau) - \tau- \Omega(1)})$ amortized update time, and $O(n^{1+\tau-\Omega(1)})$ worst query time.