Beta Binomial Distribution
Tags: #Math #StatisticsEquation
Latex Code
1 2 3 | x \sim f(x | n, \alpha, \beta), \\ f(x | n, \alpha, \beta) = \int_{0}^{1} \text{Bin}(x|n,p)\text{Beta}(p|\alpha,\beta) dp , \\ f(x | n, \alpha, \beta) = C^{x}_{n} \frac{B(x+\alpha, n -x + \beta)}{B(\alpha,\beta)} |
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
1 2 3 | x \sim f(x | n, \alpha, \beta), \\ f(x | n, \alpha, \beta) = \int_{0}^{1} \text{Bin}(x|n,p)\text{Beta}(p|\alpha,\beta) dp , \\ f(x | n, \alpha, \beta) = C^{x}_{n} \frac{B(x+\alpha, n -x + \beta)}{B(\alpha,\beta)} |
Explanation
Latex code for the Beta Binomial Distribution. Beta Binomial Distribution describe the situation that the probability of success in each trial is heteregenous or different as
- Beta Binomial Distribution:
- Hyperparameters of
of beta distribution - Binomial trials
Reply