Calls and Puts with Different Strikes
Tags: #Financial #EconomicsEquation
$$K_{1} < K_{2} \\ 0 \le c(K_{1})  c(K_{2}) \le (K_{2}  K_{1})e^{rT} \\ 0 \le p(K_{2})  p(K_{1}) \le (K_{2})  K_{1})e^{rT} \\ \frac{c(K_{1})  c(K_{2})}{K_{2}  K_{1}} \ge \frac{c(K_{2})  c(K_{3})}{K_{3}  K_{2}} \\ \frac{p(K_{1})  p(K_{2})}{K_{2}  K_{1}} \le \frac{p(K_{3})  p(K_{2})}{K_{3}  K_{2}}$$Latex Code
K_{1} < K_{2} \\ 0 \le c(K_{1})  c(K_{2}) \le (K_{2}  K_{1})e^{rT} \\ 0 \le p(K_{2})  p(K_{1}) \le (K_{2})  K_{1})e^{rT} \\ \frac{c(K_{1})  c(K_{2})}{K_{2}  K_{1}} \ge \frac{c(K_{2})  c(K_{3})}{K_{3}  K_{2}} \\ \frac{p(K_{1})  p(K_{2})}{K_{2}  K_{1}} \le \frac{p(K_{3})  p(K_{2})}{K_{3}  K_{2}}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
K_{1} < K_{2} \\ 0 \le c(K_{1})  c(K_{2}) \le (K_{2}  K_{1})e^{rT} \\ 0 \le p(K_{2})  p(K_{1}) \le (K_{2})  K_{1})e^{rT} \\ \frac{c(K_{1})  c(K_{2})}{K_{2}  K_{1}} \ge \frac{c(K_{2})  c(K_{3})}{K_{3}  K_{2}} \\ \frac{p(K_{1})  p(K_{2})}{K_{2}  K_{1}} \le \frac{p(K_{3})  p(K_{2})}{K_{3}  K_{2}}
Explanation
Latex code for the Calls and Puts with Different Strikes. For European calls and puts, with strike prices K_{1} and K_{2}, where K_{1} < K_{2}, we know the following.
 : Call option of strike price K_{1}
 : Call option of strike price K_{2}
American options, For three different options with strike prices K1 < K2 < K3:
 : Call option of strike price K_{1}
 : Call option of strike price K_{2}
Related Documents
Related Videos
Discussion
Comment to Make Wishes Come True
Leave your wishes (e.g. Passing Exams) in the comments and earn as many upvotes as possible to make your wishes come true

Robin GriffithsMy one wish right now is to pass this test.Linda Brown reply to Robin GriffithsNice~20240115 00:00:00.0 
Cynthia HallAiming for the stars with this test.Raymond Sanchez reply to Cynthia HallBest Wishes.20240328 00:00:00.0 
Walter KelleyWorking hard in hopes of passing this test.Matthew Taylor reply to Walter KelleyGooood Luck, Man!20230710 00:00:00.0
Reply