Cartesian to Spherical Coordinates
Tags: #Math #GeometryEquation
$$\begin{array}{*{20}c} {x = R\sin \theta \cos \phi } & {R = \sqrt {x^2 + y^2 + z^2 } } & {} \\ {y = R\sin \theta \sin \phi } & {\phi = \tan ^{  1} \left( {\frac{y}{x}} \right)} & {} \\ {z = R\cos \theta } & {\theta = \cos ^{  1} \left( {\frac{z}{{\sqrt {x^2 + y^2 + z^2 } }}} \right)} & {} \\ \end{array}$$Latex Code
\begin{array}{*{20}c} {x = R\sin \theta \cos \phi } & {R = \sqrt {x^2 + y^2 + z^2 } } & {} \\ {y = R\sin \theta \sin \phi } & {\phi = \tan ^{  1} \left( {\frac{y}{x}} \right)} & {} \\ {z = R\cos \theta } & {\theta = \cos ^{  1} \left( {\frac{z}{{\sqrt {x^2 + y^2 + z^2 } }}} \right)} & {} \\ \end{array}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
\begin{array}{*{20}c} {x = R\sin \theta \cos \phi } & {R = \sqrt {x^2 + y^2 + z^2 } } & {} \\ {y = R\sin \theta \sin \phi } & {\phi = \tan ^{  1} \left( {\frac{y}{x}} \right)} & {} \\ {z = R\cos \theta } & {\theta = \cos ^{  1} \left( {\frac{z}{{\sqrt {x^2 + y^2 + z^2 } }}} \right)} & {} \\ \end{array}
Explanation
Latex code for Cartesian to Spherical Coordinates.
 : Spherical Coordinates
 : Radius
Related Documents
Related Videos
Discussion
Comment to Make Wishes Come True
Leave your wishes (e.g. Passing Exams) in the comments and earn as many upvotes as possible to make your wishes come true

Damon DaltonHopefully, I can celebrate passing this test!Thomas Wilson reply to Damon DaltonNice~20231026 00:00:00.0 
Rose RogersI hope I've studied enough to pass this test.Anne Brooks reply to Rose RogersNice~20230822 00:00:00.0 
Robin GriffithsPlease universe, let me pass this exam.Troy Tucker reply to Robin GriffithsYou can make it...20230505 00:00:00.0
Reply