Diffusion Model Reverse Process

Tags: #machine learning #diffusion

Equation

$$p_\theta(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod^T_{t=1} p_\theta(\mathbf{x}_{t-1} \vert \mathbf{x}_t) \\ p_\theta(\mathbf{x}_{t-1} \vert \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_\theta(\mathbf{x}_t, t), \boldsymbol{\Sigma}_\theta(\mathbf{x}_t, t))$$

Latex Code

                                 p_\theta(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod^T_{t=1} p_\theta(\mathbf{x}_{t-1} \vert \mathbf{x}_t) \\
            p_\theta(\mathbf{x}_{t-1} \vert \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_\theta(\mathbf{x}_t, t), \boldsymbol{\Sigma}_\theta(\mathbf{x}_t, t))
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            p_\theta(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod^T_{t=1} p_\theta(\mathbf{x}_{t-1} \vert \mathbf{x}_t) \\
            p_\theta(\mathbf{x}_{t-1} \vert \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_\theta(\mathbf{x}_t, t), \boldsymbol{\Sigma}_\theta(\mathbf{x}_t, t))
        

Explanation

Related Documents

Related Videos

Discussion

Comment to Make Wishes Come True

Leave your wishes (e.g. Passing Exams) in the comments and earn as many upvotes as possible to make your wishes come true


  • Rose Rogers
    The thought of passing this exam is all I want.
    2024-02-16 00:00

    Reply


    Joe Lane reply to Rose Rogers
    You can make it...
    2024-03-02 00:00:00.0

    Reply


  • Karen Wilson
    I have my heart set on passing this test.
    2024-02-28 00:00

    Reply


    Barbara Garcia reply to Karen Wilson
    You can make it...
    2024-03-13 00:00:00.0

    Reply


  • Ronald Walker
    Everything I've worked for comes down to this test.
    2023-04-24 00:00

    Reply


    Lawrence George reply to Ronald Walker
    Best Wishes.
    2023-05-03 00:00:00.0

    Reply