Gibb Free Energy Change
Tags: #Chemistry #ThermochemistryEquation
$$\Delta G^\circ = \sum {G^\circ _f {\rm{products}}} - \sum {G^\circ _f {\rm{reactants}}} \\ \Delta G^\circ = \Delta H^\circ - T\Delta S^\circ \\ \Delta G^\circ = - n\Im E^\circ$$Latex Code
\Delta G^\circ = \sum {G^\circ _f {\rm{products}}} - \sum {G^\circ _f {\rm{reactants}}} \\ \Delta G^\circ = \Delta H^\circ - T\Delta S^\circ \\ \Delta G^\circ = - n\Im E^\circ
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
\Delta G^\circ = \sum {G^\circ _f {\rm{products}}} - \sum {G^\circ _f {\rm{reactants}}} \\ \Delta G^\circ = \Delta H^\circ - T\Delta S^\circ \\ \Delta G^\circ = - n\Im E^\circ
Explanation
Latex code for Gibb Free Energy Change. Gibb's Free Energy Change in Terms of Enthalpy, Absolute Temperature, and Entropy. Also, Gibb's Free Energy Change can be expressed in Terms of Gas Constant, Absolute Temperature, and Equilibrium Constant. Additionally, Gibb's Free Energy Change can be expressed in Terms of Number of Moles, Faraday, and Standard Reduction Potential.
: Gibb Free Energy Change
: Enthalpy chage
: Absolute Temperature
: Entropy Change
: Gas Constant
: Gas Constant
: Equilibrium Constant
: Number of Moles
: Faraday
: Standard Reduction Potential
Reply