Optics Paraxial Geometrical

Tags: #A #B #C

Equation

$$\frac{n_1}{v}-\frac{n_2}{b}=\frac{n_1-n_2}{R} \\ \frac{1}{f}=(n_{\rm l}-1)\left(\frac{1}{R_2}-\frac{1}{R_1}\right) \\ \frac{1}{f}=\frac{1}{v}-\frac{1}{b} \\ \frac{1}{f}=\frac{1}{f_1}+\frac{1}{f_2}-\frac{d}{f_1f_2}$$

Latex Code

                                 \frac{n_1}{v}-\frac{n_2}{b}=\frac{n_1-n_2}{R} \\
            \frac{1}{f}=(n_{\rm l}-1)\left(\frac{1}{R_2}-\frac{1}{R_1}\right) \\
            \frac{1}{f}=\frac{1}{v}-\frac{1}{b} \\
            \frac{1}{f}=\frac{1}{f_1}+\frac{1}{f_2}-\frac{d}{f_1f_2}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            \frac{n_1}{v}-\frac{n_2}{b}=\frac{n_1-n_2}{R} \\
            \frac{1}{f}=(n_{\rm l}-1)\left(\frac{1}{R_2}-\frac{1}{R_1}\right) \\
            \frac{1}{f}=\frac{1}{v}-\frac{1}{b} \\
            \frac{1}{f}=\frac{1}{f_1}+\frac{1}{f_2}-\frac{d}{f_1f_2}
        

Explanation

Latex code for the Paraxial geometrical optics. I will briefly introduce the notations in this formulation.

  • : refraction at a spherical surface with radius R
  • : distance of the object
  • : distance of the image
  • : refractive index of the lens
  • : focal length
  • : curvature radii of both surfaces
  • : dioptric power of a lens
  • : Approximation of focal length

Related Documents

Related Videos

Discussion

Comment to Make Wishes Come True

Leave your wishes (e.g. Passing Exams) in the comments and earn as many upvotes as possible to make your wishes come true


  • Louise Kelley
    I wish for the knowledge to pass this exam.
    2023-12-08 00:00

    Reply


    Gerald Diaz reply to Louise Kelley
    Gooood Luck, Man!
    2024-01-07 00:00:00.0

    Reply


  • Kathy Young
    It's my earnest desire to pass this exam.
    2024-02-18 00:00

    Reply


    Roy Butler reply to Kathy Young
    Best Wishes.
    2024-02-29 00:00:00.0

    Reply


  • Dorothy Parker
    I really want to ace this exam.
    2023-04-03 00:00

    Reply


    Rebecca Walker reply to Dorothy Parker
    Best Wishes.
    2023-05-02 00:00:00.0

    Reply