Optics Paraxial Geometrical
Tags: #A #B #CEquation
Latex Code
1 2 3 4 | \frac{n_1}{ v }-\frac{n_2}{b}=\frac{n_1-n_2}{R} \\ \frac{1}{f}=(n_{\ rm l}-1)\left(\frac{1}{R_2}-\frac{1}{R_1}\right) \\ \frac{1}{f}=\frac{1}{ v }-\frac{1}{b} \\ \frac{1}{f}=\frac{1}{f_1}+\frac{1}{f_2}-\frac{d}{f_1f_2} |
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
1 2 3 4 | \frac{n_1}{ v }-\frac{n_2}{b}=\frac{n_1-n_2}{R} \\ \frac{1}{f}=(n_{\ rm l}-1)\left(\frac{1}{R_2}-\frac{1}{R_1}\right) \\ \frac{1}{f}=\frac{1}{ v }-\frac{1}{b} \\ \frac{1}{f}=\frac{1}{f_1}+\frac{1}{f_2}-\frac{d}{f_1f_2} |
Explanation
Latex code for the Paraxial geometrical optics. I will briefly introduce the notations in this formulation.
: refraction at a spherical surface with radius R
: distance of the object
: distance of the image
: refractive index of the lens
: focal length
: curvature radii of both surfaces
: dioptric power of a lens
: Approximation of focal length
Reply