Optics Paraxial Geometrical

Tags: #A #B #C

Equation

$$\frac{n_1}{v}-\frac{n_2}{b}=\frac{n_1-n_2}{R} \\ \frac{1}{f}=(n_{\rm l}-1)\left(\frac{1}{R_2}-\frac{1}{R_1}\right) \\ \frac{1}{f}=\frac{1}{v}-\frac{1}{b} \\ \frac{1}{f}=\frac{1}{f_1}+\frac{1}{f_2}-\frac{d}{f_1f_2}$$

Latex Code

                                 \frac{n_1}{v}-\frac{n_2}{b}=\frac{n_1-n_2}{R} \\
            \frac{1}{f}=(n_{\rm l}-1)\left(\frac{1}{R_2}-\frac{1}{R_1}\right) \\
            \frac{1}{f}=\frac{1}{v}-\frac{1}{b} \\
            \frac{1}{f}=\frac{1}{f_1}+\frac{1}{f_2}-\frac{d}{f_1f_2}
                            

Have Fun

Let's Vote for the Most Difficult Equation!

Introduction

Equation



Latex Code

            \frac{n_1}{v}-\frac{n_2}{b}=\frac{n_1-n_2}{R} \\
            \frac{1}{f}=(n_{\rm l}-1)\left(\frac{1}{R_2}-\frac{1}{R_1}\right) \\
            \frac{1}{f}=\frac{1}{v}-\frac{1}{b} \\
            \frac{1}{f}=\frac{1}{f_1}+\frac{1}{f_2}-\frac{d}{f_1f_2}
        

Explanation

Latex code for the Paraxial geometrical optics. I will briefly introduce the notations in this formulation.

  • : refraction at a spherical surface with radius R
  • : distance of the object
  • : distance of the image
  • : refractive index of the lens
  • : focal length
  • : curvature radii of both surfaces
  • : dioptric power of a lens
  • : Approximation of focal length

Related Documents

Related Videos

Comments

Write Your Comment

Upload Pictures and Videos