Optics Paraxial Geometrical
Tags: #A #B #CEquation
$$\frac{n_1}{v}-\frac{n_2}{b}=\frac{n_1-n_2}{R} \\ \frac{1}{f}=(n_{\rm l}-1)\left(\frac{1}{R_2}-\frac{1}{R_1}\right) \\ \frac{1}{f}=\frac{1}{v}-\frac{1}{b} \\ \frac{1}{f}=\frac{1}{f_1}+\frac{1}{f_2}-\frac{d}{f_1f_2}$$Latex Code
\frac{n_1}{v}-\frac{n_2}{b}=\frac{n_1-n_2}{R} \\ \frac{1}{f}=(n_{\rm l}-1)\left(\frac{1}{R_2}-\frac{1}{R_1}\right) \\ \frac{1}{f}=\frac{1}{v}-\frac{1}{b} \\ \frac{1}{f}=\frac{1}{f_1}+\frac{1}{f_2}-\frac{d}{f_1f_2}
Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
\frac{n_1}{v}-\frac{n_2}{b}=\frac{n_1-n_2}{R} \\ \frac{1}{f}=(n_{\rm l}-1)\left(\frac{1}{R_2}-\frac{1}{R_1}\right) \\ \frac{1}{f}=\frac{1}{v}-\frac{1}{b} \\ \frac{1}{f}=\frac{1}{f_1}+\frac{1}{f_2}-\frac{d}{f_1f_2}
Explanation
Latex code for the Paraxial geometrical optics. I will briefly introduce the notations in this formulation.
- : refraction at a spherical surface with radius R
- : distance of the object
- : distance of the image
- : refractive index of the lens
- : focal length
- : curvature radii of both surfaces
- : dioptric power of a lens
- : Approximation of focal length
Reply