The Tunnel Effect
Tags: #physics #quantumEquation
$$\psi(x)=a^{-1/2}\sin(kx) \\ E_n=n^2h^2/8a^2m \\ \psi_1=A{\rm e}^{ikx}+B{\rm e}^{-ikx} \\ \psi_2=C{\rm e}^{ik'x}+D{\rm e}^{-ik'x} \\ \psi_3=A'{\rm e}^{ikx} \\ k'^2=2m(W-W_0)/\hbar^2 \ k^2=2mW \\ T=|A'|^2/|A|^2$$Latex Code
                                 \psi(x)=a^{-1/2}\sin(kx) \\
            E_n=n^2h^2/8a^2m \\
            \psi_1=A{\rm e}^{ikx}+B{\rm e}^{-ikx}  \\ 
            \psi_2=C{\rm e}^{ik'x}+D{\rm e}^{-ik'x}  \\
            \psi_3=A'{\rm e}^{ikx} \\
            k'^2=2m(W-W_0)/\hbar^2 \
            k^2=2mW \\
            T=|A'|^2/|A|^2
                            
                        Have Fun
Let's Vote for the Most Difficult Equation!
Introduction
Equation
Latex Code
            \psi(x)=a^{-1/2}\sin(kx) \\
            E_n=n^2h^2/8a^2m \\
            \psi_1=A{\rm e}^{ikx}+B{\rm e}^{-ikx}  \\ 
            \psi_2=C{\rm e}^{ik'x}+D{\rm e}^{-ik'x}  \\
            \psi_3=A'{\rm e}^{ikx} \\
            k'^2=2m(W-W_0)/\hbar^2 \
            k^2=2mW \\
            T=|A'|^2/|A|^2
                
    Explanation
Latex code for the Parity Equation. If the wavefunction is split into even and odd functions, it can be expanded into eigenfunctions of P. I will briefly introduce the notations in this formulation.
- : Wavefunction of a particle in an infinitely high potential well 
- : The energy levels 
- : If 1, 2 and 3 are the areas in front, within and behind the potential well 
Related Documents
Related Videos
Comments
- 
          
 
- 
          
 I've done everything I can, now I just need to pass this exam. 
- 
          
 

Reply