X

BigQuery

Information

# BigQuery MCP server [![smithery badge](https://smithery.ai/badge/mcp-server-bigquery)](https://smithery.ai/server/mcp-server-bigquery) A Model Context Protocol server that provides access to BigQuery. This server enables LLMs to inspect database schemas and execute queries. ## Components ### Tools The server implements one tool: - \`execute-query\`: Executes a SQL query using BigQuery dialect - \`list-tables\`: Lists all tables in the BigQuery database - \`describe-table\`: Describes the schema of a specific table ## Configuration The server can be configured with the following arguments: - \`--project\` (required): The GCP project ID. - \`--location\` (required): The GCP location (e.g. \`europe-west9\`). - \`--dataset\` (optional): Only take specific BigQuery datasets into consideration. Several datasets can be specified by repeating the argument (e.g. \`--dataset my_dataset_1 --dataset my_dataset_2\`). If not provided, all datasets in the project will be considered. ## Quickstart ### Install #### Installing via Smithery To install BigQuery Server for Claude Desktop automatically via [Smithery](https://smithery.ai/server/mcp-server-bigquery): \`\`\`bash npx -y @smithery/cli install mcp-server-bigquery --client claude \`\`\` #### Claude Desktop On MacOS: \`~/Library/Application\ Support/Claude/claude_desktop_config.json\` On Windows: \`%APPDATA%/Claude/claude_desktop_config.json\` ##### Development/Unpublished Servers Configuration \`\`\`json "mcpServers": \{ "bigquery": \{ "command": "uv", "args": [ "--directory", "\{\{PATH_TO_REPO\}\}", "run", "mcp-server-bigquery", "--project", "\{\{GCP_PROJECT_ID\}\}", "--location", "\{\{GCP_LOCATION\}\}" ] \} \} \`\`\` ##### Published Servers Configuration \`\`\`json "mcpServers": \{ "bigquery": \{ "command": "uvx", "args": [ "mcp-server-bigquery", "--project", "\{\{GCP_PROJECT_ID\}\}", "--location", "\{\{GCP_LOCATION\}\}" ] \} \} \`\`\` Replace \`\{\{PATH_TO_REPO\}\}\`, \`\{\{GCP_PROJECT_ID\}\}\`, and \`\{\{GCP_LOCATION\}\}\` with the appropriate values. ## Development ### Building and Publishing To prepare the package for distribution: 1. Sync dependencies and update lockfile: \`\`\`bash uv sync \`\`\` 2. Build package distributions: \`\`\`bash uv build \`\`\` This will create source and wheel distributions in the \`dist/\` directory. 3. Publish to PyPI: \`\`\`bash uv publish \`\`\` Note: You'll need to set PyPI credentials via environment variables or command flags: - Token: \`--token\` or \`UV_PUBLISH_TOKEN\` - Or username/password: \`--username\`/\`UV_PUBLISH_USERNAME\` and \`--password\`/\`UV_PUBLISH_PASSWORD\` ### Debugging Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the [MCP Inspector](https://github.com/modelcontextprotocol/inspector). You can launch the MCP Inspector via [\`npm\`](https://docs.npmjs.com/downloading-and-installing-node-js-and-npm) with this command: \`\`\`bash npx @modelcontextprotocol/inspector uv --directory \{\{PATH_TO_REPO\}\} run mcp-server-bigquery \`\`\` Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.

Prompts

Reviews

Tags

Write Your Review

Detailed Ratings

ALL
Correctness
Helpfulness
Interesting
Upload Pictures and Videos

Name
Size
Type
Download
Last Modified

Upload Files