X

Category

Overview

Most Reviewed

Qwen3-0.6B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 0.6B Number of Paramaters (Non-Embedding): 0.44B Number of

Qwen3-32B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 32.8B Number of Paramaters (Non-Embedding): 31.2B Number of

Qwen3 14B has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 14.8B - Number of Paramaters (Non-Embedding): 13.2B - Nu

Qwen3-8B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 8.2B Number of Paramaters (Non-Embedding): 6.95B Number of La

Qwen3-4B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 4.0B Number of Paramaters (Non-Embedding): 3.6B Number of Lay

Qwen3-1.7B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 1.7B Number of Paramaters (Non-Embedding): 1.4B Number of L

Top Rated

Qwen3-0.6B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 0.6B Number of Paramaters (Non-Embedding): 0.44B Number of

Qwen3-32B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 32.8B Number of Paramaters (Non-Embedding): 31.2B Number of

Qwen3 14B has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 14.8B - Number of Paramaters (Non-Embedding): 13.2B - Nu

Qwen3-8B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 8.2B Number of Paramaters (Non-Embedding): 6.95B Number of La

Qwen3-4B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 4.0B Number of Paramaters (Non-Embedding): 3.6B Number of Lay

Qwen3-1.7B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 1.7B Number of Paramaters (Non-Embedding): 1.4B Number of L

agent

Qwen3-0.6B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 0.6B Number of Paramaters (Non-Embedding): 0.44B Number of

Qwen3-32B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 32.8B Number of Paramaters (Non-Embedding): 31.2B Number of

Qwen3 14B has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 14.8B - Number of Paramaters (Non-Embedding): 13.2B - Nu

Qwen3-8B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 8.2B Number of Paramaters (Non-Embedding): 6.95B Number of La

Qwen3-4B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 4.0B Number of Paramaters (Non-Embedding): 3.6B Number of Lay

Qwen3-1.7B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 1.7B Number of Paramaters (Non-Embedding): 1.4B Number of L

REASON

Qwen3-0.6B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 0.6B Number of Paramaters (Non-Embedding): 0.44B Number of

DeepSeek-Prover-V2 is an open-source large language model designed for formal theorem proving in Lean 4, with initialization data collected through a recursive theorem proving pipeline powered by Deep

Qwen3-32B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 32.8B Number of Paramaters (Non-Embedding): 31.2B Number of

Qwen3 14B has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 14.8B - Number of Paramaters (Non-Embedding): 13.2B - Nu

Qwen3-8B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 8.2B Number of Paramaters (Non-Embedding): 6.95B Number of La

Qwen3-4B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 4.0B Number of Paramaters (Non-Embedding): 3.6B Number of Lay

Qwen3-1.7B has the following features: Type: Causal Language Models Training Stage: Pretraining & Post-training Number of Parameters: 1.7B Number of Paramaters (Non-Embedding): 1.4B Number of L

Reviews

Tags


  • kevinsmash 2025-05-04 08:47
    Interesting:5,Helpfulness:5,Correctness:5

    Qwen 0.6B small size LLM is extremely powerful in realworld applications such as search and recommendation, query intent recognition, etc. And Qwen3 0.6B model is the SOTA one compared to previous counterparts such as Gemini and Llama small size LLM.


  • aigc_coder 2025-05-02 12:03
    Interesting:5,Helpfulness:5,Correctness:5

    Qwen3 32B model series are the most widely adopted and deployed model in industrial applications, which compromise of inference speed and performance. This updated version of Qwen3 32B model have the thinking mode and non-thinking mode, which supports both the common task of chat/text generation and more complex task of math, code generation, etc. On the AIME and many other math benchmarks, Qwen3 surpass many of the opensource counterpart.

Write Your Review

Detailed Ratings

Upload Pictures and Videos